
World Transactions on Engineering and Technology Education       © 2006 UICEE 
Vol.5, No.3, 2006 

 509 

 

 
 
 

INTRODUCTION 
 
Nowadays, automated systems have been intensively explored 
and implemented to help human beings perform their daily 
activities. In the industrial field, automated systems support 
many tasks, such as storing and retrieving goods to and from 
storage, performing automated welding inspection, automatic 
painting, etc. People tend to develop manufacturing systems 
that can be easily adapted to any environment. One application 
of such a system is normally used for material handling and 
transportation. An example of this system is an Autonomous 
Mobile Robot (AMR). The behavioural complexity of this 
robot is very high. One way to trace it back is by developing a 
micromouse robot, which is an electro-mechanical miniature of 
an AMR assigned to perform tasks in an unknown maze. It has 
a freedom to move around within its environment. The maze 
consists of a labyrinth and walls that construct the maze all 
together. The robot is ordered to move from one origin point to 
the final destination point, which is located in the centre of the 
labyrinth. In fact, this labyrinth is an unknown maze for the 
robot that has never visited it before [1-5]. 
 
The searching should be performed autonomously without any 
human intervention, which means an algorithm is needed to 
enable actions without any human help. Searching algorithms 
for this kind of task have been explored and improved to reach 
the target or finish line as fast as possible. This research 
focuses on developing a searching algorithm based on the 
implementation of a potential value concept and comparing the 
results with some existing algorithms used for similar tasks. 
 
PROBLEM IDENTIFICATION 
 
Some problems found here include identifying how to build a 
searching algorithm in a labyrinth that has never been mapped 
to reach a goal point and how the design of a simulation system 
to examine the algorithm looks like. 

IEE MICROMOUSE RULES 
 
A micromouse robotic competition has to comply with IEE 
micromouse standard rules. These competition rules consists of 
three parts, ie the labyrinth rule, robot rule and competition rule 
[6][7]. The labyrinth comprises 16 x 16 cells (square form) of 
18 cm x 18 cm. The wall thickness and height are 1.2 cm and 5 
cm, respectively. The outermost wall covers the whole 
labyrinth. The coating on the top and wall side are chosen so 
that it has capability to reflect an infrared beam, while the 
coating on the floor should absorb the beam. 
 
An example of a valid labyrinth is depicted in Figure 1. The 
robot starting position is at one cell at the corner of labyrinth 
(designated as S). The cell must have three walls surrounding 
it. The starting point (cell) has an opening heading North, with 
the outermost wall of the labyrinth heading West and South. 
The centre of the labyrinth is a square consisting of four square 
units and becomes the destination point of the mouse robot 
(designated as T). This cell has only one entrance (way). 
 

 
 

Figure 1: The Japanese National Championship layout. 
 
The robot has to be a self-contained robot or it is not a 
remotely controlled robot. The robot is prohibited to leave 

The design of a maze solving system for a micromouse by using a potential value 
algorithm 

 
Bagus Arthaya, Ali Sadiyoko & Ardelia Hadiwidjaja 

 
Parahyangan Catholic University 

Bandung, Indonesia 
 
 

ABSTRACT: Automation has recently influenced the industrial sectors in a wide range. To be able to survive in the competitive 
world, a firm has to keep increasing its efficiency, effectiveness and productivity. Automated systems have been developed to 
achieve that objectives and have becoming more applicable in industrial sectors. These systems are designed to ease and make safe 
difficult and hazardous human tasks such as welding, spray painting, car-body assembling, reactor dismantling and so on. An 
example of automated systems is Autonomous Mobile Robot (AMR). A computer simulation model of AMR has been developed 
and a certain degree of intelligence is implanted. This is needed when the robot has to take its own decision in determining the path. 
The task of this robot is to reach a target region which is located in the centre of a certain labyrinth. The labyrinth has never been 
mapped before and the robot has to find the easiest way to get to the target. The search should be performed autonomously without 
any human intervention. Some simulations show the capability of the robot in searching its goal and it behaves differently depending 
on the complexity of the maze. 

 
 



  

 510 

anything behind during its journey in the labyrinth. The robot 
is also not allowed to jump, climb, scratch, break or destroy the 
walls of labyrinth. The robot’s dimensions are limited by the 
cell size and must not exceed 25 cm x 25 cm. 
 
The time needed for travelling from the starting point to the 
destination point is called run time. The total time for each run 
is from the point that the robot is activated for the first time 
until the distance is measured; this is called maze time or 
search time. If the robot needs manual assistance at any time 
during the contest, then the robot is considered to be in touch. 
The scoring judgement is based on these three parameters. 
 
Each robot has maximum time of only 10 minutes to explore 
the labyrinth. Scoring for the micromouse robot consists of 
handicapped time calculation for each run. Handicapped time 
is measured from the run time, search penalty and touch 
penalty. 
 
DESIGN OF THE SEARCHING ALGORITHM 
 
Potential value is any value possessed by any cell (the square 
area) that represents the minimum distance in numbered 
rectangular steps from the destination point located at the 
centre of the labyrinth. Therefore, the destination point will 
certainly have zero value (0). The potential value of each cell is 
shown in Figure 2, along with a generated path. 
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Figure 2: (a) The potential value for each cell and (b) the 
generated path based on the potential values. 
 
Heading defines the direction or orientation of the robot when 
it is moving. There are four headings used to define it, ie west, 
south, east and north. Other variables used in designing the 
algorithm are as follows: 
 
• Flag: a variable indicating if the cell has been visited 

(false if cell has not been visited and true otherwise); 
• Marking: a variable indicating prohibition, ie if a cell can 

be visited or not. Any cell should not be visited if the 
marking value is true, with three elements setting the 
marking value to be true: the cell is a dead end (no way 
out); the cell is a part of dead end; or the cell is part of a 
closed looping path; 

• Count: a value identifying how many times the cell has 
been visited; after the robot arrives at a certain cell, the 
count variable of this cell is increased by one; 

• Way: shows the number of alternative ways that can be 
chosen by the robot. The possible situations are: no way 
(dead end); one choice, two choices or three choices. This 
becomes the criteria in making a decision to define which 
direction should be taken. 

When the robot resides in a certain cell, it will perform the 
following steps: 
 
• First, check whether or not the cell has been visited; 
• Check where the walls are; 
• Calculate the number of ways; 
• Make a decision based on the available number of ways; 
• Move between cells, check for closed loop paths and dead 

ends, and update cell variables; 
• Finally, check if the destination cell has been reached. 
 
Strategy for Effective Movement 
 
The main behaviour of the micromouse robot is the capability 
to make a decision in difficult situations, as follows: 
 
• Execute a dead end procedure (Way=0) when the robot 

faces three walls as shown at point G in Figure 2(b). Cell 
G is then marked true and the robot turns around 180°; 

• Execute a 1-way procedure (Way=1) when there is only 
one possible way to go, as depicted in Figure 2(b) from 
the starting point to A, from D until E, and from G to one 
cell before F; 

• Execute a more_than_1-way procedure (Way=2 or 3), 
when there is more than one way to go. At cell F, 
more_than_1-way procedure is accomplished where there 
are two ways. The robot turns right as the right side cell 
has a lower potential value (6), which is smaller then the 
other cell (value of 8). 

 
All of these procedures, ie dead end, 1-way, and more_than_1-
way procedures, are equipped with some criteria in making a 
decision so that the robot can determine which is the best way 
or which is the next cell to be visited. If the robot has two or 
three alternative ways, then the first criteria that applies is the 
flag of the neighbouring cell. A flag is a sign given to indicate 
whether the cell has been visited before. The first possibility is 
that at least one neighbouring cell has not been passed. In this 
situation, the robot will choose the unvisited path (cell). But if 
there is more than one unvisited cell, then the decision is based 
on the potential value. Potential value criteria is a method to 
choose alternative paths by selecting the neighbouring cell with 
the smallest potential value. If there are two cells having the 
smallest value, then a straight path is selected. Forward 
movement (path) is set to have a higher priority than turning left 
or right. This is achieved by considering that moving forward 
needs less effort than turning the robot. The lower priority is, of 
course, turning right and then left. 
 
Cell Marking Procedure 
 
When facing a dead end point, the robot should mark all the 
cells that belong to this end point, as shown Figure 3.  
 

 
 

Figure 3: Dead end cell and cell as parts of dead end. 

(a) (b) 
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The cells identified to be dead end cells are D, H, J and N. the 
cells that belong to the dead end are E until F, P and O, and K. 
Once the cells are marked, then the next time the robot comes 
to this point, it will not take these points as an alternative way. 
 
Confusing Cells and the Avoidance of Closed Loop Paths 
 
In a certain situation, all neighbouring cells in the path have 
been visited (Flag=true). In this case, the decision criteria is 
count. The count limit is set to 4 as the minimum number to 
indicate that the robot has come back to the same cell from the 
same direction. An example is shown in Figure 4, indicating 
when the robot faces three alternative paths, as follows: 
 
• As the robot moves from A to B, it detects three paths, ie 

turn left to D, forward to C, or turn right to E. The 
potential value of E and C are the same. The priority for 
forward direction is then applied and the robot moves to 
cell C. The count at B is set to 1 (Figure 4(a)); 

• When going back to B from A, the count at B is increased 
to 2. Of the three alternatives, one path has been passed, 
so it moves to E, which has never been passed and has the 
smallest potential value (Figure 4(b)); 

• When returning to B from A, the count at B increases to 3. 
There is only one possible path left; it then moves to the 
only cell that has never been passed, ie D (Figure 4(c)); 

• When the robot returns once more to B, the count at B is 
set finally to 4 with all alternative paths having been 
passed (Figure 4(d)). 
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(a) (b) (c) (d) 
Figure 4: Multiple robot arrivals at the same cell. 

 
Figure 5(a) depicts an example of when the robot faces three 
alternative paths at point A. From E, it moves to A and the 
count at cell A is increased by 1, for instance to 4. It then 
checks the existence of the walls and detects there to be no wall 
on the left front and right side. It then checks the marking of all 
the cells and determines that all are false. So the robot has three 
choices: move to D, turn left to B, or turn right to C. As the 
count limit (4) is reached, the decision is then based on the 
count criteria. It is assumed that the count at cell B, C and D 
are 1, 2 and 2, respectively. The robot then selects the cell with 
the smallest count, ie cell B. 
 

  
 
Figure 5: (a) The robot faces three visited paths, and (b) it faces 
a closed looping path. 
 
In the next trip, the robot goes back to cell A from B. The 
count at A now becomes 5. All the three paths for the robot, ie 

straight to C, turn left to D and turn right to E, have been 
visited. The count of A is already higher than 4. The next step 
is to check the count of the neighbouring cell. It is determined 
that the counts are all the same: 2. Based on these values, the 
next test is to check the potential values of all the neighbouring 
cells’ potential values, with D and C being the smallest 
numbers. Finally, the robot chooses a straight movement to C 
based on the forward movement priority. 
 
In some particular places, the robot arrives at a confusing point, 
where it arrives at the same point again after travelling some 
distance, as shown in Figure 5(b) and marked by a circle. An 
algorithm is also developed in order to identify whether a part 
of the maze forms a closed looping path. In this case, B, C, D, 
E, F and G are cells that form a closed looping path. When the 
robot arrives at cell B from cell G, it checks for a second time 
whether cell B has been visited. As the robot has previously 
visited cell B, then one previous cell is checked, indicating that 
cell G is 1-way and the robot can only move to cell B. This 
checking is repeated for all previous cells until finding a cell 
that has more than 1-way, ie cell B. Since this cell is the 
current position of the robot, it concludes that those cells (B, C, 
D, E, F and G) are part of a closed looping path and the 
marking is then set to true. 
 
THE DEVELOPMENT OF THE SIMULATION 
 
The algorithm explained above is examined for 10 labyrinth 
(maze) types in a simulation program developed in Turbo 
Pascal and Borland Delphi 7 programming languages [8][9]. 
The 10 labyrinths are the USA, Japan, Canada, Singapore, UK, 
APEC, ITB, British, Japan2 and TI Unpar mazes. Screenshots 
of this simulation program is shown in Figure 6(a). The run 
button starts the simulation according to the type of maze 
chosen in the Maze Menu window. The robot’s speed can be 
adjusted using the track bar by dragging it to the left or right. 
The stop button immediately halts the simulation at the robot’s 
current position, with the left button space showing the total 
number of cells that the robot has visited. The close button 
terminates and exits the program. Figure 6(b) shows one try 
when the robot was exploring the TI Unpar maze. 
 

  
 
Figure 6: (a) Screenshots of the simulation program and (b) the 
exploration of the TI Unpar maze. 
 
GENERAL ANALYSIS 
 
To evaluate the algorithm developed in this research, three 
different algorithms have been executed for the same maze, ie 
wall following, DFS+ (Depth First Search+) and potential value. 
The exploration results of the three compared algorithms are 
shown in Figures 7, 8(a) and 8(b). 
 
In Figure 7, one can see that when the robot implements the wall 
following algorithm, it fails to reach the destination point. 

(a) (b) 
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Conversely, the DFS+ and potential value algorithms lead the 
robot to successfully reach the destination point. The 
exploration result of a certain maze shows that using the DFS+ 
algorithm results in the robot travelling longer than if the 
potential value algorithm were used. When the ITB maze is 
chosen, the robot travelling distance using the DFS+ algorithm 
is 71 times the movement to reach the goal, but when using the 
potential value algorithm, the robot moves only 41 times. 
 

 
 

Figure 7: Exploration utilising the wall-following algorithm. 
 
The route passed by the robot using both algorithms is still the 
same until the fourth cross section (denoted by the circle in 
Figure 8(a) and the circle in Figure 8(b)). This is caused by the 
fact that both algorithms make the same decision in 
approaching the goal. In the DFS+ algorithm, the goal is a 
labyrinth having the highest level, while for the potential value 
algorithm, the goal is a cell that has the lowest value. At the 
fourth cross section, different decisions are taken. Using the 
DFS+ algorithm, the robot faces an equal option condition, 
(equal labyrinth level=3) and the priority set is to turn right. 
This situation is handled differently in the potential value 
algorithm. The robot turns left as the potential value of the left 
cell is smaller than the value of the right cell. The results of the 
travelling distance are tabulated in Table 1. 
 

      
 
Figure 8: An exploration of the ITB maze using: (a) the DFS+ 
algorithm and (b) the potential value algorithm. 
 
For the Japan, Canada, ITB, TI Unpar and APEC mazes, the 
count limit has no effect on the travelling distance. In contrast, 
the USA, Singapore, UK, British and Japan2 mazes’ different 
count limits correspond to different travelling distances. The 
USA and Singapore labyrinths have a similar pattern, ie the 
higher the limit, the shorter the travelling distance. The 
opposite is the case for the UK labyrinth, where a higher count 
limit makes for longer travelling distances. The British and 
Japan2 labyrinths show hyperbolic curves with opposing 
directions to each other. In conclusion, the optimal count limit 

depends highly on the type of labyrinth, while the labyrinth 
itself has not been mapped or is unknown for the robot. 
 
Table 1: A comparison of the travelling distances for the 
different labyrinth types. 
 

Count Limit 2 3 4 5 6 7 
Japan 62 62 62 62 62 62 
Canada 186 186 186 186 186 186 
ITB 41 41 41 41 41 41 
TI Unp. 60 60 60 60 60 60 
APEC 64 64 64 64 64 64 
USA 335 335 249 217 217 217 
Singapore 315 307 293 195 195 195 
UK 367 367 617 921 995 1349 
British 320 294 264 272 280 288 

M
az
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Japan2 342 358 756 962 414 462 
 
Figure 6(a) depicts the exploration in the TI Unpar maze. It 
needs 60 times movements to reach the destination point. The 
robot nicely reaches the target, while using the other two 
algorithms leads to different phenomena. The wall following 
algorithm fails to perform the task, while the DFS+ makes for 
longer travelling distances. 
 
CONCLUSIONS 
 
Some conclusions drawn from this exercise are described as 
follows: 
 
• The searching algorithm for unmapped labyrinth consists 

of several key steps: checking of the cell status and 
existence of walls; calculation of the number of ways and 
the making of a decision based on the available number of 
paths; movement between cells while also checking 
whether the destination cell has been reached or not; 

• The simulation program has been developed to examine 
the potential value algorithm and has been executed for 10 
labyrinth types; 

• The potential value algorithm has successfully reached the 
target for the 10 types of labyrinth; 

• The algorithm developed here is capable of determining a 
dead end, part of a dead end and closed loop paths; 

• The algorithm has been built to prevent the robot from 
becoming trapped in a closed loop path. 

 
REFERENCES 
 
1. Micromouse UK (2004), http://micromouse.cs.rhul.ac.uk/ 
2. MicroMouseInfo.com, http://www.micromouseinfo.com/ 
3. University of California, Berkeley, IEEE Student Branch 

(2006), http://ucsee.eecs.berkeley.edu/ 
4. Dr Robin Sarah Bradbeer (2006), 

http://www.ee.cityu.edu.hk/~rtbrad/ 
5. Mutijarsa, K. et al, Membangun robot tikus cerdas. Proc. 

Conf. on the World of Automation, Bandung, Indonesian, 
A-1-40 (2003) (in Indonesian). 

6. Micromouse Information Centre Competition Rules (2004), 
http://micromouse.cannock.ac.uk/rules.htm  

7. UK Micromouse Championship Rules 
http://www.tic.ac.uk/micromouse/toh.asp 

8. Borodich, Y. and Leonenko, V., The Revolutionary Guide 
to Turbo Pascal. Birmingham: WROX Press (1992).  

9. Guldner J. et al, Multiple wave propagation for global path 
planning. Proc. 4th Inter. Conf. on Intelligent Autonomous 
Systems, Karlsruhe, Germany, 427-434 (1995). 

(a) (b) 


